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I. RESEARCH OBJECTIVES

I. Utilize small-angle neutron scattering to characterize cavity

nucleation and growth rates under tensile creep conditions as functions

of time, temperature, stress, strain, strain rate, and microstructure.

2. Measure experimentally the local strains, grain boundary displacements,

and displacement rates attendant with the above mentioned cavity

characterizations.

3. Incorporate the measured cavity nucleation and growth rates and the

local deformation measurements into a model for grain boundary

cavitation under tensile creep.

4. Characterize creep crack growth and experimentally measure, using

stereoimaging strain analysis, the crack-tip displacement field, strain

singularity, and creep strain rates as functions of stress intensity,

temperature, microstructure, and precavitation level.

5. Incorporate the cavitation model and measurements and the crack-tip

micromechanical measurements into a fundamental creep crack growth

model for ceramics.

*
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II. STATUS OF THE RESEARCH EFFORT

A. Scope

Because of the attractive strength properties of ceramics at elevated

temperatures, there is great interest in developing a new generation of

aerospace propulsion systems capitalizing on advanced ceramics technology.

These new propulsion systems would potentially offer higher operating

temperatures and lower weights, thus providing dramatic increases over current

engine designs in both efficiency and performance. While present engines

utilize hot-stage components fabricated from nickel or cobalt-base

superalloys, it is anticipated that evolving ceramic turbines will be based on

silicon nitride and silicon carbide. In service, the ceramic components will

experience tensile and/or cyclic loadings. Very little is known, however,

* about the behavior of these ceramics under tensile creep or cyclic creep

conditions. An understanding of the basic failure mechanisms and an ability

to predict lifetimes will be necessary before ceramics can be successfully

utilized in engine applications.

In order to understand creep failure of ceramics, several specific

issues must be addressed. These include: (1) characterization of the

development of creep cavities at grain boundaries in bulk specimens as a

function of tensile stress; (2) characterization of grain boundary

displacement during bulk creep; (3) characterization of crack tip stress

relaxation due to crack tip strain; (4) characterization of cavity

distributions ahead of creep cracks; (5) performance of pure tensile tests at

* elevated temperatures; (6) creation, and characterization of the growth, of

creep microcracks. The progress that has been made along these lines is

summarized below. Research effort in these areas is continuing under AFOSR

Contract No. F49620-88-C-0081.

B. Current Status

Usually, "tensile" testing of ceramics has been performed in flexural

* bending, a compromise which produces a stress gradient across the specimen.

2
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Pure tensile testing of brittle materials is difficult, because of alignment

considerations which can produce unknown, unwanted bending moments, and hence

spurious strength measurements. It is important to the goals of the proposed

program to achieve pure tensile testing, however, since (1) it is desired to

characterize cavitation in terms of a known applied tensile stress normal to

the cavitating grain boundaries, and (2) it is necessary to secure a

reasonably large sample of material cavitated at a uniform stress level for

the SANS measurements. Bend tests violate both of these requirements.

A major portion of the first year of this contract was thus spent

designing and fabricating a tensile creep apparatus. A schematic of the

tensile creep frame is presented in Figure 1, and a close-up photograph of the

environmental chamber, furnace, specimen, and gripping arrangement is

presented in Figure 2. This frame utilizes deadweight loading and is capable

* of testing at stresses in excess of 1000 MPa and temperatures up to 23000C.

Self-aligning universal joints are affixed to the specimen grips, which,

acting in conjunction with the flexures that are machined into both the upper

and lower pull rods, minimize the bending moment imposed on the sample during

* testing.

Close-up views of the gripping assembly and specimen design are also

shown in Figure 1. The grip assembly is composed of a water-cooled super-

alloy main body which encloses split ceramic collets. Since ceramic specimens

cannot relax plastically at grip contact points like metal alloys, boron

nitride powder is used as a powder cushion lubricant between the specimen ends

and the collet-type grips. The specimen design, which is based on finite

element stress calculations, minimizes stress concentrations in the gage and

grip areas.

Surface preparation techniques for the stereoimaging strain analysis

* were also examined during the first year. Generally, the stereoimaging

analysis requires two photographs of the same region obtained at different

deformation states; for creep loading this is accompli*hed by photographing

the same area at various times. In this manner, the strains and strain rates

can be determined. Since the analysis is a surface technique, it requires that

3
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SFIGURE 2. PHOTOGRAPH OF THE ENVIRONMENTAL CHAMBER OF ThE TENSILE CREEP

FRAME SHOWING THE FULLY ASSEMBLED GRIPPING ARRANGEMENT. Also
visible are the back halves of the tungsten heating elements and

* the heat shields.
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the surface re;,ains unmodified, apart from modification due to the creep

strains, during the time interval between the photographs. Examination of the

ceramic to be used in the initial series of tests, Norton NC 203 hot-pressed

silicon carbide, showed that polished surfaces were substantially modified

during thermal holds at temperatures around 1600 0C. Thus, as-polished

surfaces are not sufficient for the stereoimaging measurements. Investigation

of a number of alternate surface preparation techniques indicated that

surfaces that were given a thermal etching treatment following polishing did

not change dramatically during subsequent creep or thermal treatments. It

thus appears that polished and thermally etched surfaces are sufficient for

the stereoimaging measurements.

Effort during the second year of this contract was concentrated in

three areas. The first area of effort involved problem solving in the tensile

creep apparatus. The first trial runs with the system demonstrated that the

specimen design was able to sustain the tensile loads required for the creep

tests, the bending moment could be sufficiently minimized, and temperatures in

excess of 1600'C could be reached. However, two problems were encountered; an

inability to consistently reproduce the alignment conditions required to

minimize the bending moment and the gradual development of oxide contamination

in the furnace chamber.

To solve the former problem, the button-iead and split-collect geometry

were modified to permit a larger volume of boron nitride powder to be used and

to allow additional freedom-of-motion for the sample during self-alignment in

the boron nitride powder. Alignment checks with strain gaged specimens have

shown that reproducible conditions can now be achieved. To solve the latter

problem of contamination, all of the cooling water lines, which were

originally a flexible nonmetallic material, were replaced with stainless steel

lines. Small flexible bellows were employed at critical locations on the

* cooling lines to counteract the inherent rigidity of the stainless steel

tubing and thus minimize any tendency of the cooling lines to impart unwanted

loading to the griD assemblies.

6
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Having corrected the alignment and contamination problems experienced

in the tensile creep rig, the second area of effort involved performing a

series of tensile creep experiments that form the foundation for determinina

cavity nucleation and growth kinetics as a function of time, temperature,

stress, strain, and strain rate.

The third area of effort was the preparation of a manuscript titled

"Stochastic Aspects of Creep Cavitation in Ceramics." The manuscript was

published in Metallurgical Transactions, Vol. 18A, p. 1843 (1987) as an

invited paper in the compendium of papers from the Stochastic Aspects of

Fracture Symposium that was held at the AIME Annual Meeting in March of

1986. We anticipate that this paper will provide the cornerstone for our

understanding of creep damage and creep crack growth under tensile loading. Of

particular interest are the development of a stochastic model of grain

* boundary sliding (pp. 17-20 of the manuscript) and a micromechanical model

that relates the cavity nucleation rate to the statistics of grain boundary

sliding events (pp. 21-24 of the manuscript). These models have made it

possible to predict the kinetics of cavity nucleation from a knowledge of the

grain boundary sliding kinetics. This approach should work equally well for

either bulk creep damage or localized damage around a creep crack. A copy of

the manuscript has been included in the Appendix.

The shutdown of the SANS instrument at the National Center for Small-

Angle Scattering Research at Oak Ridge has delayed characterization of the

cavitation kinetics from the NC203 samples that were crept during the second

year of the program. During this delay emphasis was redirected to the crack

O growth studies. High temperature creep crack growth work was initiated on a

hot-pressed silicon carbide and on a pyroceram. The use of the pyroceram

permits in situ crack growth studies in our high temperature SEM loading

stage. Use of the scanning electron microscope (SEM) loading stage allows for

real time high resolution observation of the creep crack growth process.

We have recently received a block of beam time on the SANS instrument

at the Los Alamos Neutron Scattering Center. Although the Los Alamos facility

* is a pulsed neutron source it appears that its resolution and mimimum q will

4 7

N0

w4 %



be sufficient for the required measurements. The SANS characterizations of
bulk creep damage are being run concurrently with the creep crack growth

m studies.
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III. PUBLICATIONS (AFOSR SPONSORSHIP)

I. "Stochastic Aspects of Creep Cavitation in Ceramics," R.A. Page and
K.S. Chan, Metallurgical Transactions, Vol. 18A, p. 1843, (1987).

2. "Cavitation During Tensile Creep of Silicon Carbide," R.A. Page (in
preparation).
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STOCHASTIC ASPECTS OF CREEP CAVITATION IN CERAMICS

R. A. Page and K. S. Chan
Southwest Research Institute

6220 Culebra Road
San Antonio, Texas 78284

Abstract

Creep fracture of ceramic materials frequently occurs by the nucle-

ation, growth, and coalescence of grain boundary cavities. Recent experi-

mental studies of cavitation kinetics in compression crept ceramics, sup-

* ported by micromechanical modeling, have identified a number of stochastic

aspects of cavitation. The stochastic nature of cavitation arises pri-

marily due to the dependence of both cavity nucleation and cavity growth

on grain boundary sliding. A degree of randomness is also imposed bv the

nonuniform distribution of potential nucleation sites. Pertinent experi-

mental results and micromechanical models are briefly presented and used

to support the important role of grain boundary sliding. A stochastic

model of grain boundary sliding is then proposed by considering the slid-

ing events to occur as an inhomogeneous Poisson process. Implications of

the stochastic nature of cavitation are then discussed in terms of the

cavity nucleation, growth, and coalescence processes.

N
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INTRODUCTION

At low or intermediate temperatures ceramic materials typically fail

in a brittle manner, with the failure emanating from pre-existing flaws

formed either during processing or surface finishing. Statistical models

based on a weakest link approach have proven to be quite successful in

predicting failure probabilities of ceramics in these temperature regimes.

At elevated temperatures, however, failure of ceramic materials commonly

occurs by the nucleation, growth, and coalescence of grain boundary cavi-

ties and/or microcracks (1). This increase in damage with time precludes

the use of the weakest link type models. An alternative approach is,
I

therefore, needed for predicting the failure times or probabilities of

ceramic materials at elevated temperatures.

Lifetime prediction schemes based on an integration of one or more

of the cavity nucleation and/or growth models have been proposed (2-5).

However, although these treatments have been somewhat successful, they

fail to treat the statistical aspects of cavitation. It is the purpose of

this paper to establish the importance of a viable statistical failure

model by demonstrating the highly stochastic nature of grain boundary

cavitation and then discussing the consequences of such stochastic cavita-

tion. Recent small-angle neutron scattering measurements of cavity nucle-

ation and growth rates (6-10) and micromechanical models of the cavitation

process (11-14) will be employed to reveal the stochastic nature of cavi-

tation. In particular, it will be demonstrated that 1) the driving force

for creep cavitation is stochastic grain boundary sliding, 2) grain

boundary sliding events can be represented as an inhomogeneous Poisson

process, and 3) the rate of cavity nucleation is directly proportional to
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the intensity function describing the stochastic grain boundary sliding

process.

Any discussion of cavitation in ceramics should give consideration

to the various grain boundary microstructures available in ceramic systems

and the effect that the microstructure has on the mechanisms involved in

cavitation. For simplicity, only two microstructural groups will be con-

sidered in this paper; one group being composed of materials that contain

no glassy second phase on the grain boundaries and the other group being

composed of materials that contain a continuous glassy phase on the grain

boundaries. In the following sections experimental data and micromechani-

cal models representative of both microstructural groups will be used to

illustrate the stochastic aspects of cavitation, and, despite the general

consensus that the operative cavitation mechanism is different in the two

microstructural groups,* the stochastic nature of cavitation will be shown

to be quite similar in both groups.

CAVITY NUCLEATION

Cavity nucleation is most often a critical step in the creep damage

accumulation process. Not only is cavity nucleation necessary to initiate

intergranular fracture, but the siting of the cavities strongly affects

subsequent growth and coalescence processes. Even in ceramics, which con-

tain significant residual porosity left over from processing, cavity

Cavity growth is b'ieved to occur by viscous hole growth when a glassy

grain boundary phase is present and by grain boundary diffusion in the

absence of a glassy phase.
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nucleation is important. Previous studies of compressive creep in a sili-

con carbido with a continuous grain boundary glassy phase (8,9) and two

aluminas, one with a continuous grain boundary glassy phase (9,10) and one

without (6,7,9), have demonstrated that cavity nucleation definitely takes

place during creep of ceramics.* As shown in Fig. 1, cavity nucleation is

frequently continuous in these systems and can be expressed in the form

NNc t(

where Nc/V is the number of cavities per unit volume and t is the creep

* time. For a given applied stress a and a in Eq. (1) are constant.

For the ceramic systems for which nucleation data has been obtained

(6,7,9,10), values of s ranging from 0.19 to 1.0 have been obtained.

These results are quite similar to the s values ranging from 0.38 to 1.0

that have been reported for a number of metallic materials (15-17).

The cavity densities observed in these systems are relatively high.

Since there are insufficient numbers of three grain junctions to account

for the majority of the cavities observed, it can be concluded that cavi-

tation must occur on two grain facets, as well as along three grain junc-

tions. The presence of cavities on two grain facets has been confirmed by

The small-angle neutron scattering measurements can detect cavities down

to approximately 0.5-1.0 nm. This ability to detect very small cavities

eliminates the possibility that the additional cavities are not nucle-

ated but rather grow from pre-existing cavities that are below the de-

tection limit.

11 4 1' , " I' , , , I , '' I I 0 1 1
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direct observation with both transmission electron microscopy (7,9) and

scanning electron microscopy (9,10). These observations have also shown

that the cavities are predominantly present in closely spaced clusters

rather than homogeneous or nearly homogeneous distributions, i.e., some

facets or portions of facets are highly cavitated while other facets are

completely devoid of cavitation. Additionally, the cavities in a cluster

are frequently all of equal or nearly equal size, suggesting that the

cavities in the cluster may have all nucleated at the sam. time.

Cavity nucleation in ceramics has generally been considered to occur

through the clustering or condensation of vacancies on grain boundaries.

Theoretical analyses indicate that stresses considerably in excess of the

dpplied stress under which cavities are observed to nucleate are required

to form a spherical cavity in materials both with (18) and without (19-21)

a grain boundary glassy phase. As described in several reviews (21-26), a

variety of stress concentration sites, including stress concentrations at

particles, ledges, and triple points on sliding boundaries, have been pro-

posed for reconciling the apparent discrepancy between the theoretical

treatments and the experimental observations. The absence of significant

numbers of grain boundary particles in the two aluminas and the silicon

carbide for which cavity nucleation data is depicted in Fig. 1 rules out

nucleation at particles and suggests that ledges may have been the pre-

ferred site for the nucleation of the large number of two grain facet

cavities in these systems. Although information on the presence of grain

boundary ledges in the silicon carbide is not yet available, high den-

sities of ledges have been observed in aluminas with clean grain bound-

aries (27-29) and with continuous glassy phases (9,10). Additionally,

I
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Wiederhorn et al (30) have observed clusters of creep cavities situated at

grain boundary ledges in a glass-bonded aluminum oxide. Experimental

results thus indicate that cavity nucleation is a stochastic process since

it occurs at discrete points in time and space.

In order to gain a better understanding of the physical factors

which may be responsible for the probabilistic nature of cavity nuclea-

tion, it is instructive to examine a relevant nucleation model. Recent

work by Chan et al (14), which demonstrates that sliding along faceted

grain boundaries can induce time-dependent stress concentrations of suffi-

cient magnitude ard duration to cause cavity nucleation, has been selected

for this purpose since it appears to be highly relevant to the nucleation

events occurring in the above mentioned ceramic systems. In the work of

Chan et al (14) it was assumed that a periodic array of ledges, such as

the one depicted in Fig. 2, were present on the grain boundary, and that

during grain boundary sliding the boundary would lose its ability to carry

shear tractions, thus converting the shear stress, T, into a normal

stress, a, concentrated at the ledges. This stress concentration would be

time dependent, however, because of the gradual onset of the sliding event

and the subsequent diffusive relaxation of any stress concentrations. The

stress concentration at a ledge would thus be expected to initially in-

crease, as the boundary relaxed, and then decrease, as diffusive relaxa-

tion proceeded. The time-dependent stress concentration at the grain

* boundary ledge, a(x,t), was found to be described by

ftJ = sine cose{.[l-exp(-t/tB)exp(-t/tc)eXp(-2x/h)-cotej (2)

0
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where a is the applied stress, 9 is the angle the boundary makes with the

applied stress, x is the ledge spacing, h is the ledge height, t is time,

and tBR and tc are the characteristic relaxation times for the relaxation

of the shear stresses on the boundary and for relaxing the elastic stress

concentration at the ledge by grain boundary diffusion, respectively. The

solution of Eq. (2) for a ledge height of 8 nm and a ledge spacing of 400

nm along a grain boundary which is inclined at a 450 angle to the stress

axis is illustrated in Fig. 3. It is evident from this figure that large

stress concentrations can indeed develop at the ledges. However, if

ledges are to act as efficient cavity nucleation sites, nucleation must

occur prior to the diffusive relaxation of the stress concentration.

Chan et al (14) have calculated the characteristic times for relax-

ing stress concentrations at grain boundary ledges by either grain bound-

ary diffusion or power-law creep in a pure alumina at 1600 0C and compared

them to estimates of the incubation time for cavity nucleation. The re-

sults of these calculations, Fig. 4, suggest that a narrow range of h/X

exists in which the incubation time for cavity nucleation is less than the

characteristic time for relaxation of the stress concentration but greater

than the characteristic time for relaxation of the shear tractions on the

* boundary. It is in this regime that cavity nucleation is expected.

Another, and perhaps simpler, way of looking at the effect of the ledge

height to spacing ratio is to plot the stress concentration factor, evalu-

* ated at the cavity incubation time, as a function of h/x, as shown in Fig.

5. What is seen from this figure is that the stress concentration evalu-

ated at the incLtbation time is small at both small and large values

* of h/x because at small h/x the shear tractions have not yet fully relaxed
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and at large values of h/x the stress concentration has been relaxed by

grain boundary diffusion. It is only in the central regime of h/x that

stresses of sufficient magnitude are present for a long enough duration to

result in cavity nucleation.

The above model thus suggests that cavity nucleation should be

stochastic in time, due to its strong dependence on the highly stochastic

process of grain boundary sliding, and also in location, due to its re-

quirement for a specific range of h/x. In other words, cavity nucleation

occurs on boundaries of a particular microstructure, but only when those

boundaries experience sliding.

It should be emphasized that, although the above discussion has been

based on a very specific nucleation model, any nucleation mechanism that

requires the development of a stress concentration at a specific micro-

structural feature through grain boundary sliding, as most of the mecha-

nisms proposed to date do, would yield similar conclusions. This is

likely why the stochastic nature of cavity nucleation is evident in sys-

tems with (9,10) or without grain boundary glassy phases (6,7,9) and for

cavitation at triple points (31-33) or along two grain facets (6-10).

CAVITY GROWTH

In the previous section it was shown that the dependence of cavity

nucleation on grain boundary sliding imparts strong stochastic traits to

the nucleation process. In this section it will be shown that grain

boundary sliding may similarly affect cavity growth and thus impart unex-

pected transient growth behavior.
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A logical starting point for the present discussion of cavity growth

is a consideration of the driving force for growth. In ceramics which do

not contain a glassy grain boundary phase, cavity growth is thought to

occur by grain boundary diffusion, with the cavity growth rate being

described by (11)

2naDh(a -2y/R)kTI f(t/R) (3)

where V is the cavity volume, t is time, a is the atomic volume, 0 is the

grain boundary diffusion coefficient, h is the grain boundary height, n

is the normal stress across the boundary, y is the surface energy, R is

the cavity radius, i is the cavity spacing, k is Boltzman's constant, and

T is temperature. Similarly, in ceramics which do contain a glassy grain

boundary phase, cavity growth )s thought to occur by a viscous process,

with the cavity growth rate being described by (12)

2/3 2 _8. A2(4)

R= 2irRhal

and

h3[ n-2yK(1-0.9 '2)(h= n (5)

6nt 2[O.96a' 2-lna'-O.23a' _-.72]

* where a' is the ratio of the cavity radius to the cavity spacing, n is the

viscosity of the glassy phase, a' is the cavity shape factor, and K is a

constant related to the ratio of the grain boundary, surface, and inter-

facial energies. It is evident from the above equations that the cavity

11110& 1
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growth rate, for either diffusive or viscous growth, is proportional to

the boundary normal stress minus the sintering stress resulting from sur-

face energy considerations. Thus, cavity growth in ceramics both with and

without a grain boundary glassy phase is expected to be driven by the

grain boundary normal stress in the vicinity of the cavity, with larger

normal stresses resulting in more rapid growth.

Estimates of cavitation kinetics based on small-angle neutron scat-

tering measurements of a number of d~fferent ceramics crept under compres-

sive loading (6-10) have shown that the volume of an individual cavity can

be expressed as

V = at$ (6)

where t is the time from nucleation, and a and a are constants. Values

of a ranging from 0.0 to 0.62 have been obtained. Thus, previous measure-

ments of cavity growth rates have resulted in either a zero growth rate

(7,9,10), corresponding to s = 0, or a growth rate that decreases with

time (8-10), corresponding to 0 < s < 1.0.* A plot of cavity radius vs

time illustrating both of the above behaviors is provided in Fig. 6. It

is evident from the figure that in the systems for which s was found to be

0

*It is not thought that the observations of continuous cavity nucleation

accompanied by limited growth are either an artifact of the measurement

technique or unique to the particular syst.ms or conditions investigated.

Studies of cavitation in a number of metallic systems using techniques

other than small-angle scattering have shown similar behavior (34,35).

'X.%-



zero, i.e., no apparent cavity growth, the constant cavity radius was con-

siderably larger than the estimated radius of a critical cavity nucleus.

Thus, a condition of I = 0 should not be interpreted as indicating that

the cavities nucleate and do not grow, but rather that a very rapid growth

transient of short duration exists immediately following nucleation; the

length of the transient being so short that the experimental measurements

cannot detect it.

The experimental measurements presented above clearly show cavity

growth in these ceramic systems as a transient, rather than a steady-

state, process, and imply the existence of transient boundary tractions.

* The subject of transient boundary tractions, present at grain boundary

ledges, was introduced in the previous section in dealing with cavity

nucleation concepts. However, their extremely short duration and small

spatial extent eliminate the stress concentrations formed at ledges during

boundary sliding as a likely cause of the observed cavity growth tran-

sients. Two other possibilities do exist, however. Raj (36) has analyzed

transient stresses arising from the nucleation of the cavit s and from

grain boundary sliding transients. In both cases, the characteristic

relaxation time, tr is given by (36)
6

32(1 2) L3kT (7)
r = 3EDhsi

I where v is Poisson's ratio, E is Young's modulus, and L is the character-

istic diffusion length, which would be either one half of the cavity

spacing for transients arising from cavity nucleation or one half of the

I P I W

6M
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grain size for transients arising from the grain boundary sliding tran-

sient. The characteristic relaxation time for stress concentrations with

a repeat distance equivalent to the cavity spacing (- 100 nm) is much too

short to explain the growth transients which persist for a number of hours

in the silicon carbide and alumina samples for which 0 < 8 < 1, although

it may be of the correct duration to explain the very short transients

which must occur in the systems for which s = 0. The characteristic time

for stress concentrations with a repeat distance equivalent to the grain

size is, on the other hand, of the same order as the duration of the

growth transients observed when 0 < 8 < 1. Hence, it appears that the

* cavity growth transient that one observes for B values between zero and

one may be the result of the sliding transient that exists at the onset of

grain boundary sliding.

The relationship between the grain boundary sliding rate and the

driving force for cavity growth that exists during compressive creep can

be seen in the viscous cavity growth model proposed by Chan et al (13).

Treating the constrained growth of cavities in a material containing a

continuous glassy grain boundary phase, they envisaged cavities growing on

boundaries oriented parallel to the applied compressive stress in response

to a local boundary normal stress that arose due to grain boundary

sliding, as depicted in Fig. 7. Combining Equations (6) and (7) of Ref.

(13), the average normal stress, 0n' acting on the boundary BE in Fig. 7

* during steady-state sliding can be written as

- #.33Un (8)
n 2d

0
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where 0 is the grain boundary sliding rate, n is the viscosity of the

glassy phase, and d is the grain diameter. Combining Equations (4), (5)

and (8) yields*

h 2(2 3t 2-_' R2)r33- -
- 2yK(1-O.9a2)

12iRs'nz 2 O.96a2_lna,-O.23a,4_O.721 (9)

When viewed in this manner, it is clear that the grain boundary sliding

rate provides the driving force for cavity growth during compressive

creep. If one considers only steady-state sliding, then the growth behav-

* ior depicted by the dashed line in Fig. 8 is predicted by Equation (9).

There is good agreement between theory and experiment in the steady state

region. On the other hand, the constrained growth model (13), from which

Equation (9) was derived, does not do an adequate job of modeling the time

dependence of the experimentally measured growth rate in the transient

region; leading, once again, to the conclusion that stress transients

arising from sliding transients must be considered for the observed growth

transients. In addition to its important role in cavity nucleation, the

;tochastic process of grain boundary sliding, thus, appears to play a sig-

nificant role in cavity growth during compressive loading as well. Dis-

regard for the stochastic aspects can lead to large errors in cavity

growth rate predictions.

Although not presented here, a similar treatment can be performed with

Eq. (3) for cavity growth on clean grain boundaries.

6
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Caution must be employed when trying to apply the above arguments,

which were derived for compressive loading, to cavity growth under tensile

loading. In a compressive creep test, most if not all of the normal

stress on the cavitating tensile boundaries arises through grain boundary

sliding. On the other hand, grain boundary sliding and the applied ten-

sile stress both contribute to the normal tractions during tensile creep.

Thus, although sliding transients are expected under tensile loading, they

may not dominate the cavity growth process in tension as they apparently

do in compression. The effect of the sliding transients on cavity growth

during tensile creep would, of course, depend on the relative magnitudes

of the normal tractions developed through sliding and directly through

tensile loading. A series of creep cavitation experiments are presently

in progress to characterize cavitation kinetics under uniaxial tensile

loading.

DEFORMATION CHARACTERISTICS IN
CAVITATION OF CERAMICS

The preceding review indicates the important role of grain boundary

sliding in the cavitation process of ceramics at elevated temperatures.

Specifically, grain boundary sliding provides the driving force for cavity

nucleation and/or growth in ceramics by inducing a local, transient ten-

sile stress at grain boundary ledges (7,14), particles (3,36,37), or

* triple-points (38,39). Both the applied stress and the sliding-induced

tensile stress contribute to the driving force for cavitation in ceramics

under remote tension, while for ceramics urder compressive loading, the

sliding-induced local tensile stress represents the sole source of the

4
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driving force for cavitation. Previous reviews (40,41) indicated that, in

both ceramics and metals, the contribution of grain boundary sliding to

the macroscopic creep rate can be substantial. In many instances, the

grain boundary sliding displacement was found to be discontinuous with

time (41), indicating the stochastic nature of the process. As alluded to

earlier, stochastic grain boundary sliding accounts for the observations

of: 1) continuous cavity nucleation in ceramics with clean boundaries

(6,7) as well as in ceramics with grain boundary amorphous phases (9,10),

and 2) transient cavity growth in ceramics with glassy phases along grain

boundaries (8-10).

For compatibility reasons, grain boundary sliding in polycrystalline

materials is restricted or constrained in the sense that the displacement

of a sliding boundary must be accommodated by the neighboring grains (37).

As a result, sliding-induced cavity nucleation and growth occur in a con-

strained manner and, because of the need for accommodation, is often con-

trolled by diffusion and/or the deformation characteristics of the matrix

(42), depending on the accommodation process which can be diffusive and/or

dislocation creep. The role of grain deformation characteristics in con-

strained cavity nucleation and/or growth can be elucidated by considering

the contribution of individual grains to the macroscopic strain rate in a

polycrystalline material containing grains which deform initially at t<t1

at a constant creep rate, jc' and a constant sliding rate, j s . The total,

macroscopic shear strain rate, t' equals the sum of js and c . Oefin-

ing js/ t as A, the probability density function for grains of a given

value Of A is th-i represented by the delta function, as illustrated in

O_ Fig. 9. At t > tI , stochastic grain boundary sliding is allowed to occur

0j 111 1
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in some of the grains such that Vi represents the volume fraction of the
.i .i

ith group of grains creeping at Yc and sliding at ys" Under this circum-

stance,

i + i) (10)t s ic

with z being the total number of groups of grains deforming and creeping

i i i
at different values Of A (A s/Y. For constrained deformation,

it =.1i ii
t c (11)

for all values of Ai ranging from 0 to 1. Substituting Eq. (11) into Eq.

(10) leads to rVi = 1, as it should. The probability density function for

grains of a given value of Ai is, however, no longer described by the

delta function but instead by one which shows a finite probability value

for each possible value of Ai (Fig. 9). Thus, the volume fraction of

grains sliding at a given A i ratio varies with time, even though the

macroscopic strain rate, it, is constant for constrained deformation. A

relevant stochastic grain boundary sliding model must therefore consider

* the number of grain boundary sliding events or grains with time.

The largest grain boundary sliding rate would, of course, be associ-

ated with grains with a large A value (e.g., A = 1). As grain boundary

sliding provides the driving force for cavitation, grains with large A

values would be the most likely regions where cavity nucleation and/or

m
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growth would occur. The initial population of these grains in a poly-

crystalline ceramic is probably small, as illustrated in Fig. 9. Conse-

quently, grains with large sliding components (large A) are likely to be

surrounded by grains of large creep components (small A). The ramifica-

tion is that in a polycrystalline ceramic some grain boundaries are sus-

ceptible to cavitation while adjacent boundaries might not be. Cavitation

would therefore occur in clusters, as observed experimentally (7). In

addition to the presence of grain boundary sliding, the cavitation suscep-

tibility of a grain boundary increases with the presence of ledges and/or

particles and varies with grain size and surface energy. Hence, a nonuni-

form distribution of ledges, particles, grain size, and surface energy

among individual grain boundaries would also lead to heterogeneous cavita-

tion.

STOCHASTIC MODELING OF GRAIN BOUNDARY SLIDING

Stochastic grain boundary sliding was experimentally observed in Cu

(43), Al (44-47), and Sn (48) bicrystals; these earlier works were thor-

oughly reviewed in Ref. 49. In the study on Cu bicrystals, Intrater and

Machlin (43) found that each of the stochastic grain boundary sliding

events was distinct with the sliding distance/time curves being character-

ized by null displacement periods and sudden displacement jumps. These

characteristics suggest that stochastic grain boundary sliding satisfies

5 the four assumptions for a point process (50): (i) all epochs of the grain

boundary sliding events are distinct, (ii) any finite time interv 1 con-

tains only a finite number of epochs, (iii) any infinite time interval

0

~contains an Infinite number of epochs, and (iv) grain boundary sliding
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events do not occur at predetermined times. For sliding under constrained

conditions, the grain boundary sliding process can be considered to evolve

without aftereffects, i.e., the past sliding behavior has no influence on

the future behavior (50). Under this circumstance, the counting process,

N(t), associated with grain boundary sliding can be represented as an

ordinary continuous time stochastic process with the number of sliding

events with epochs in the time intervals (t1, t2] described by the Poisson

distribution. The probability law of the stochastic sliding process is

then completely specified by its mean function (50).

The mean function, i1 (t), is the expected value of N(t) of the point

process, i.e., u'(t) = E[N(t)], t 0, in which u'(t) represents the mean

value of the number of grain boundary sliding events at time t. Since

N(O) = 0 and N(t) approaches infinity as time approaches infinity (Condi-

tion iii), it follows that (50)

,'(t) = 0 for t = 0 (12)

and
4 t as t (13)

In addition, the mean function must be a strictly increasing function of

time as

* du'(t) + '(t + dt) - p'(t) = E[N(t + dt) - N(t)] (14)

I I' -l 91
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is the expected number of grain boundary sliding events in (t, t + dt) and

it is always positive. In general, the mean function u'(t) can be repre-

sented by the integral (50)

=(t) it xl'(t)dt t 0 (15)

0!

where x'(t) is the intensity function of the point (grain boundary slid-

ing) process. Combining Equations (14) and (15) leads to

X' M du'(t) > 0 (16)
dt

which indicates that the intensity function, x'(t), must be a positive

constant (homogeneous Poisson process) or a positive function of time

(inhomogeneous Poisson process) for all time.

A simple function that can be used for describing the mean value of

the number of grain boundary sliding events at time t is*

'(t) =i tm (17)

with X'(t) = a0t-m (18)

* .

Other simple functions such as lnt, et, and e-I/t have been considered

but none of them are admissible in a Poisson process.

11S



20

where ao and m are constants. Equations with forms similar to Eqs. (17)

and (18) have been used previously for modeling stochastic cavity nucle-

ation (51). To satisfy the conditions specified in Eqs. (12) (13) and

(16) for a Poisson process, a0 must be greater than zero (a0 > 0) and m

must be less than unity (m < 1). If the average sliding distance for a

sliding event is <x>, the total grain boundary sliding rate, U, then be-

comes

U(t) = <x>x'(t) = a0<X>t-m (19)

*leading to

U(t) <> -m  (20)

the functional behavior of which is illustrated in Fig. 10 for three dif-

ferent limits of m values. A review of the grain boundary sliding mea-

surements compiled in Ref. 49 indicates that the experimental sliding/time

curves are described by Eq. (20) with 0 < m < 1. It can thus be concluded

that stochastic grain boundary sliding can be modeled as an inhomogeneous

* Poisson process with an intensity function, x'(t), decreasing with time.

Both Eqs. (17) and (18) have been used for developing a stochastic cavity

nucleation model (in the following section) and a cavity coalescence model

e (52).

1
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IMPLICATIONS ON CAVITATION MECHANISMS OF CERAMICS

The conventional view of cavitation in ceramics is that it proceeds

by void nucleation, growth, and coalescence mechanisms. Cavities are

presumed to nucleate primarily near three-grain junctions (triple points),

and then propagate along grain facets to form facet-sized cavities (31).

The facet-sized cavities are then stabilized; coalescence occurs when

facet-sized cavities form on continuous boundaries. While this particular

cavitation mechanism has been observed (39), there is increasing experi-

mental evidence, obtained based on transmission electron microscopy

(14,30) and small-angle neutron scattering measurements (6-10), which

0indicates that creep cavities in ceramics nucleate at ledges along two-

grain junctions. This observation has been observed in ceramics both with

*# (8-10,30) and without (6,7,14) grain boundary amorphous phases.

Nucleation of cavities at grain boundary ledges requires a high

local tensile stress which can be achieved only at grain boundary ledges

within a certain range of height/spacing ratios (14). The height/spacing

limitation exists because: 1) the stress concentration at the ledges is

relaxed by grain boundary diffusion, the effectiveness of which depends on

iA the ledge spacing, and 2) the stress concentration must persist over a

time period longer than that of the incubation time for cavity nucle-

ation. The consequence is that only grain boundaries containing ledges

which satisfy the height/spacing requirement are possible nucleation

sites. Sliding of grain boundaries containing ledges which do not satisfy

the ledge height/spacing requirement would not be expected t~ri cleate

cavities until additional ledges are introduced, possibly by the inter-

section of slip with the grain boundaries, such that the necessary ledge
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height/spacing ratio is met. Thus, continuous cavity nucleation requires

grain boundary sliding and possibly the generation of slip steps along the

grain boundaries, both of which are stochastic processes.

If one considers thermal nucleation, the rate of cavity nucleation

is given by (3,36,38)

n = C no  (21)

with C -exp(-4y 3 Fy102 kT) (22)
av

where no is the number of available nucleation sites per unit area of

grain boundary, C' is a constant, and Fv is the cavity shape parameter

which yields the volume of the cavity when multiplied by R3. The cavity

nucleation rate is generally dominated by the exponential term in Eq.

(22). The importance of the large transient normal stress induced at

grain boundary ledges or particles by stochastic grain boundary sliding is

therefore quite obvious. Additionally, the cavity nucleation rate also

depends on no which in turn is dependent on Lhe nu,b1 QJ grain boundary

sliding events. In the time interval (t, t+EJ,

no = X'(t)er (23)

* where E is the time period within which the large transient stress due to

grain boundary sliding exists (see Fig. 3), r is the number of eligible

nucleation sites (with proper h/x for rucleation at ledges (14) or proper

particle size to spacing ratios for nucleation at particles (53)) per unit

0
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area of an individual sliding boundary, and x'(t) = du'(t)/dt represents

the rate of increase of the number of sliding events. Combining Eqs. (18)

and (23) with Eq. (21) leads to

n = Coa t-m (24)

where CO = Cer is a constant which depends on temperature but not on time,

assuming the number of eligible nucleation sites (r) per unit area of an

individual sliding boundary does not significantly vary with time. Inte-

gration of Eq. (24) results in

SN c  Coao
= 0 0... tl1-m (25)V 1-m

or
N

= C o'(t) (26)

which relates the number of cavities directly to the number of stochastic

grain sliding events. The time dependence of ; and Nc/V for permissible

values of m are illustrated in Fig. 10. Comparing Eq. (1) with Eq. (25)

reveals that s = 1-m. Since 0 < m < I for stochastic grain boundary slid-

ing, the value of 8 would also range from zero to unity (0 < 8 < 1) as

observed experimentally for many metals (15-17) and ceramics (6,7,9,10).

* To the authors' knowledge, ,here are no measurements of grain boundary

sliding and cavity nucleatio: that have been performed on the same metal-

lic or cera.,ic system available in the literature. As a result, it is not

possible at the present time to verify the model prediction that the same

0
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time exponents (i.e., the same value of m) occur in Eqs. (20) and (25),

nor the assumption that r remains constant with time.

A direct consequence of the intimate relationship between stochastic

sliding and cavity nucleation is that the initial growth of sliding-

induced cavities is inherently transient. For cavity growth to continue,

the sliding-induced local tensile stress must not diminish, as a conse-

quence of diffusive or viscous relaxation, at a rate faster than that of

the sintering stress. When sufficient tensile stress is maintained, the

cavities would grow and ultimately coalesce to form a grain facet cavity

or crack, Fig. 11. On the other hand, sintering occurs when the local

* tensile stress diminishes faster than the sintering stress. For ceramics

which show zero apparent cavity growth rate, the local tensile stress is

exactly balanced by the sintering stress. Under this circumstance, cavi-

*tation proceeds by nucleating new cavities at regions adjacent to the

existing cavities. The joining of these cavities eventually leads to a

grain facet cavity (Fig. 12).

A question that has not been completely resolved is what is the

preferred orientation, if any, for grain boundary cavitation (54,55). The

general belief is that grain boundary sliding is required to provide the

stress concentration for cavity nucleation; the nucleation rate is there-

fore expected to peak at inclined boundaries where sliding is a maximum.

On the other hand, the preferred locations for either diffusive or viscous

cavity growth would be boundaries that are inclined at 900 and 0° to the

stress axis when under tension and compression, respectively. A different
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view was offered by Chen (54) who argued that grain boundary sliding is

mainly the consequence of requiring compatibility among grains in a poly-

crystal, and that the magnitude of sliding has little correlation with the

.4. resolved shear stress that is present on the grain boundary before relaxa-

tion occurs. Citing the earlier work of Mullendore and Grant (56), and

Fazan et al (57), Chen suggested that grain boundary sliding is statisti-

cally independent of the boundary inclination with respect to the applied

". stress axis. If sliding is indeed independent of boundary angle, then,

for materials under tension, the factor which influences cavitation is the

normal component of the applied stress whether or not the growth mechanism

is assisted by grain boundary sliding. Recent work (55,58) has indicated

that most of the cavitated boundaries in either metals or ceramics are

normal to the stress axis when under tension (7,55,58), but are parallel

to the stress axis when under compression (7).

IMPLICATIONS ON COALESCENCE OF FACET-SIZED CAVITIES

The mechanisms which lead to final failure of ceramics are: 1)

coalescence of facet-sized cavities to form a macrocrack, and 2) the

propagation of the macrocrack to a critical size (31). As indicated

earlier, there are preferred boundaries for cavity nucleation and growth

because the number of sliding events and the cumulative grain boundary

sliding distance differ among grains. In addition, there are also

0variations in the grain size, surface energy, ledge height and spacing,

and particle distribution. Thus, coalescence cf facet-size cavities

.% needs to be treated as a stochastic process and analyzed by statistical

means.
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The mechanisms by which facet-sized cavities coalesce are different

in ceramics under tension and compression. As illustrated in Fig. 13(a),

coalescence of facet-sized cavities under tension proceeds in a manner

which leads to a macroscopic crack that lies normal to the applied stress

axis (31), i.e., a Mode I crack. The criticality of such a crack can be

expressed in terms of a critical Kc value. On the other hand, in ceramics

under compression, a majority of the facet-sized cavities lie parallel to

the compressive stress axis and coalescence of these facet-sized cavities

occurs by a shear process (59), Fig. 13(b).

A statistical model which describes coalescence of facet-sized

cavities under tension is that of Evans and Rana (31). In this model, the

cumulative probability of observing facet-sized cavities is assumed to be

a Weibull distribution (60) expressed in terms of the time, tp, required

for a cavity to nucleate at a triple point and propagate along the two

grain channel until a facet-sized cavity is formed. The coalescence of

the facet-sized cavities to form a macroscopic crack of a given size is

then represented by the probability function due to McClintock (61) by

assuming that there is no interaction between individual facet-sized

cavities. For ceramics under nominally elastic, tensile loading, Evans

and Rana's model (31) leads to a creep-rupture criterion which relates the

Orr-Sherby-Dorn rupture parameter (62) to the remotely applied stress,

fracture toughness, and the propagation time, tp, for L particular cavity

* growth process. Good correlations have been obtained between the proposed

rupture criterion and rupture life data of A1203 and SiC fibers (31).

p,
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One advantage of the Evans and Rana statistical model (31) is that

it can be easily adapted to different cavity growth mechanisms by modify-

ing the propagation time, tp. On the other hand, tp does not describe the

driving force for cavitation, but is rather the response of the material

subjected to such a driving force. From previous discussion, it is clear

that grain boundary sliding represents, at least partially if not totally,

the driving force for cavitation. It would, therefore, seem more appro-

priate to describe the coalescence of facet-sized cavities on the basis of

the grain boundary sliding displacement or the sliding events.

A model which describes coalescence of facet-sized cavities in terms

of stochastic grain boundary sliding does not exist at the present time,

however. A possible approach for modeling the coalescence of facet-sized

cavities is to represent the cumulative probability, F(Us), of observing

facet-sized cavities at a grain boundary sliding distance Us in terms of a

three-parameter Weibull distribution:

F(Us) = 1- exp -( Usth) ] (27)

where r is the shape parameter, Uo is the scale parameter, and Uth is the

threshold distance which grain boundary sliding must exceed in order to

produce cavity nucleation and/or growth. The number of facet-sized cavi-

0 ties, N, at a sliding distance of Us is then given by

N=nbng P l-exp (28)

b0
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where nb is the number of grain boundary facets per grain, ng is the

number of grains, and Ps is the probability of the grain containing bound-

aries that would slide. For Us-Uth < Uo, Eq. (28) can be approximated as:

N s P ( Us-Uth (29)

in which the parameter, os (=n bn), describes the shape and density of

grains within a particular volume, V, of material. For cuboidal grains of

average size d,

6V (30)

and

*s .84V (31)
Ad

3

for tetrakaidecahedral grains when the volume of a tetrakaidecahedron is

approximated as d3 /6. The probaility that a particular grain would

experience grain boundary sliding and cause cavitation can be approximated

by the volume fraction, Vs , of grains with A = 1 (recalling A = jSAO .

Eq. (29) thus becomes
Ir

,N = V s th) (32)

which can be differentiated with respect to time to obtain the rate of

formation of facet-sized cavities, yielding

IIIN R 1
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Nv = Nv U U (33)s-Uth

where NV is the facet-sized cavity density. Equation (33) indicates that

the facet-sized cavity nucleation rate, NV, can be fully described in

terms of the current facet-sized cavity density, the sliding displacement

rate, and the rate of change of the volume fraction of grains that mani-

fest grain boundary sliding. Thus, both Vs and U must be considered when

modeling the coalescence of facet-sized cavities. Efforts to develop such

a cavity coalescence model are currently being undertaken by the authors

and the results are to be presented shortly (52).

In addition to a statistical description of the formation of facet-

sized cavities, statistical representations of the cavity nucleation

and/or growth processes that lead to the facet-sized cavities are also

needed to completely describe cavitation in ceramics and to predict time

to failure. These statistical analyses would need to consider the follow-

ing stochastic processes: 1) ledge formation along two-grain junctions;

2) nucleation of cavities at the grain boundary ledges; 3) coalescence of

cavities located at two-grain junctions by either cavity growth or the

* nucleation of additional cavities. In the analysis of cavity growth, the

effect of nonperiodic spacing might also be considered. Recent Monte-

Carlo simulations indicate that the time to rupture is affected by the

periodicity of the cavities (63) and also depends on whether cavities are

allowed to nucleate at regions adjacent to the existing cavities (51).

.... . ..- 11- .
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SUMM4ARY

A number of stochastic aspects of creep cavitation in ceramics have

been identified. This stochastic nature originates primarily from the

dependence of both cavity nucleation and cavity growth on the highly sto-

chastic process of grain boundary sliding. A degree of randomness is also

imposed by the nonuniform distribution of nucleation sites dictated by the

narrow range of h/x for which nucleation is likely to occur. In addition

to the effect on cavity nucleation and growth, the time and spatial dis-

creteness of cavitation also influences the critical process of cavity

coalescence. Statistical models are therefore needed for accurate life-

0 time predictions in these materials. Such models may be based either on

the perceived response of the material or on the driving force for cavita-

tion. A stochastic model is proposed for grain boundary sliding and used

for predicting cavity nucleazion. Important findings of the modeling ef-

fort are: 1) the relevant driving force for creep cavitation is stochas-

tic grain boundary sliding, 2) stochastic grain boundary sliding is an

inhomogeneous Poisson process, and 3) the cavity nucleation rate is di-

rectly proportional to the intensity function while the number of cavi-

ties/volume is directly proportional to the mean function describing the

0stochastic grain boundary sliding process. Presently, life prediction at-

tempts are limited by a lack of statistical representations of the cavity

nucleation and/or growth processes that lead to the formation of facet-

sized cavities.

0 I
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LIST OF FIGURE CAPTIONS

Figure 1. Number of cavities per unit volume versus time for a hot-

pressed silicon carbide, NC203, and two sintered aluminas,

AD99 and Lucalox. Both the hot-pressed silicon carbide and

the AD99 alumina contained a continuous, glassy grain boundary

phase. The Lucalox alumina contained glass free grain bound-

aries.

Figure 2. Schematic of an inclined, faceted grain boundary (ABCD) with a

ledge (BC) subject to a remote compressive stress, a, and the

inducement of local tensile stresses at the ledge by the

sliding of boundary segments AB and CD.

Figure 3. The stress concentration factor at the center of an 8 nm high

ledge as a function of time, t, normalized by the character-

istic time for grain boundary diffusion, tc-

Figure 4. Comparison of two estimates of the incubation time for cavity

nucleation, tu and t9, with the characteristic times for re-

laxing stress concentration at a 10 nm high GB ledge by either

grain boundary diffusion, tc, or power-law creep, tp. Also

indicated is tBR, the characteristic time for relaxing the

shear stresses along sliding grain boundaries. The range

of h/x at which tc 1 ti 2 tBR occurs is -1-3 x 10-2.
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Figure 5. Stress concentration factor at an 8 nm high grain boundary

ledge as a function of the ledge height to spacing ratio,

h/x. The stress concentration factor is evaluated at x = 0

and t = ti for equilibrium-shaped cavities with Fv = 1.24; ti

is the incubation time for cavity nucleation.

Figure 6. Increase in individual cavity radius with time. Time denotes

the elapsed time since cavity nucleation and rc is the criti-

cal cavity radius.

Figure 7. A schematic of a cavitating grain boundary, BE, subject to a

remotely applied compressive load illustrating the development

* of tensile stresses on the cavitating boundary as the result

of sliding on adjacent boundaries.

Figure 8. Comparison of calculated and measured volume of an individual

cavity as a function of time. Both the experimental and theo-

retical curves are for A099 alumina crept at 1150°C and 220

MPa, as described in Ref. (10).

Figure 9. A schematic showing the probability density function of grains

sliding at a given value of A changes with time as the result

of stochastic grain boundary sliding. Note that A = I for

grains which deform by grain boundary sliding only, and A = 0

for grains which deform by creep only. The majority of the

grains deform by both creep and grain boundary sliding.
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Figure 10. Schematics showing the dependence of p'(t), Nv/V, x'(t), and

on the range of m values admissible in a Poisson process.

Figure 11. Formation of a facet-sized cavity by nucleation of cavities at

grain boundary ledges and the growth and coalescence of these

cavities: (a) in a ceramic without a glassy phase along the

grain boundary, and (b) in a ceramic with a glassy phase along

the grain boundary.

Figure 12. Formation of a facet-sized cavity for continuous nucleation of

cavities which show no apparent growth after reaching a criti-

cal size: (a) in a ceramic without a glassy phase along the
grain boundary, and (b) in a ceramic with a glassy phase along

the grain boundary.

Figure 13. Coalescence of facet-sized cavities in ceramics: (a) ceramics

under tension (after Evans and Rana31); (b) cerdmics under

compression (after Lankford
43).
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*Fig. 2. Schematic of an inclined, faceted grain boundary (ABCD) with a
ledge (BC) subject to a remote compressive stress, a,, and the
inducement of local tensile stresses at the ledge by the sliding
of boundary segments AB and CD.
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Ledge Height = 8 nm

Ledge Spacing = 400 nm
10 h/X = 0.02

0

0 .5 1.0 1.5 2.0 2.5 3.0

t/t c

Fig. 3. The stress concentration factor at the center of an 8 nm
high ledge as a function of time, t, normalized by the
characteristic time for grain boundary diffusion, tc.
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h = 8nmh 8Partially Relaxed GB,
Fv = 1.24 Induced Stress Not

." 15 Removed by GB Diffusion

0
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", i5\ e Stress Re-

S rain Boundary iMon Di ffusion

0 0

U9 - 5 I I iI
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Ledge Height/Spacing, h/X

Fig. 5. Stress concentration factor at an 8 nm high grain boundary ledge
as a function of the ledge height to spacing ratio, h/x. The
stress concentration factor is evaluated at x = 0 and t = ti for
equilibrium-shaped cavities with Fv = 1.24; ti is the incubation
time for cavity nucleation.

2Q



90

70 AD99, J1

60 Luca1ox. 160C

50

40 NC203, 160C

30

20

10

10 a 5Y0 105

time (S)

Fig. 6. Increase in individual cavity radius with time.
Time denotes the elapsed time since cavity
nucleation and rc is the critical cavity radius.
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Fig. 7. A schematic of a cavitating grain boundary, BE, subject to a
remotely applied compressive load illustrating the develop-

* ment of tensile stresses on the cavitating boundary as the
result of sliding on adjacent boundaries.
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Fig. 8. Comparison of calculatea and measured volume of an
individual cavity as a function of time. Both the
experimental and theoretical curves are for AD99
alumina crept at 1150*C and 220 MPa, as described
in Ref. (10).
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4-,

Grains perform
4J

S-- mostly by grain

boundary sliding
0

C L0

A =s/t

Fig. 9. A schematic showing the probability density function
of grains sliding at a given value of A changes with
time as the result of stochastic grain boundary
sliding. Note that A = 1 for grains which deform
by grain boundary sliding only, and A = 0 for grains
which deform by creep only. The majority of the

* grains deform by both creep and grain boundary
sliding.
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Fig. 10. Schematics showing the dependence of VW(t), Nv/V,
x'(t), and A~ on the range of m values admissible
in a Poisson process.
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Fig. 11. Formation of a facet-sized cavity by nucleation of cavities at
grain boundary ledges and the growth and coalescence of these
cavities: (a) in a ceramic without a glassy phase along the
grain boundary, and (b) in a ceramic with a glassy phase
along the grain boundary.
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Fig. 12. Formation of a facet-sized cavity for continuous nucleation of
cavities which show no apparent growth after reaching a criti-
cal size: (a) in a ceramic without a glassy phase along the
grain boundary, and (b) in a ceramic with a glassy phase
along the grain boundary.r0
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